Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Abstract The fate of nutrients and contaminants in fluvial ecosystems is strongly affected by the mixing dynamics between surface water and groundwater within the hyporheic zone, depending on the combination of the sediment's hydraulic heterogeneity and dune morphology. This study examines the effects of hydraulic conductivity stratification on steady‐state, two‐dimensional, hyporheic flows and solute residence time distribution. First, we derive an integral transform‐based semi‐analytical solution for the flow field, capable of accounting for the effects of any functional shape of the vertically varying hydraulic conductivity. The solution considers the uneven distribution of pressure at the water‐sediment interface (i.e., the pumping process) dictated by the presence of dune morphology. We then simulate solute transport using particle tracking. Our modeling framework is validated against numerical and tracer data from flume experiments and used to explore the implication of hydraulic conductivity stratification on the statistics andpdfof the residence time. Finally, reduced‐order models are used to enlighten the dependence of key residence time statistics on the parameters characterizing the hydraulic conductivity stratification.more » « less
- 
            Abstract Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the second phase of the REgional Carbon Cycle Assessment and Processes (RECCAP‐2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. We then produce regionalized estimates of GHG emissions over 10 extensive land regions. According to our synthesis, inland water GHG emissions have a global warming potential of an equivalent emission of 13.5 (9.9–20.1) and 8.3 (5.7–12.7) Pg CO2‐eq. yr−1at a 20 and 100 years horizon (GWP20and GWP100), respectively. Contributions of CO2dominate GWP100, with rivers being the largest emitter. For GWP20, lakes and rivers are equally important emitters, and the warming potential of CH4is more important than that of CO2. Contributions from N2O are about two orders of magnitude lower. Normalized to the area of RECCAP‐2 regions, S‐America and SE‐Asia show the highest emission rates, dominated by riverine CO2emissions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
